

Building a Risk Management Information System (RMIS)

Introduction

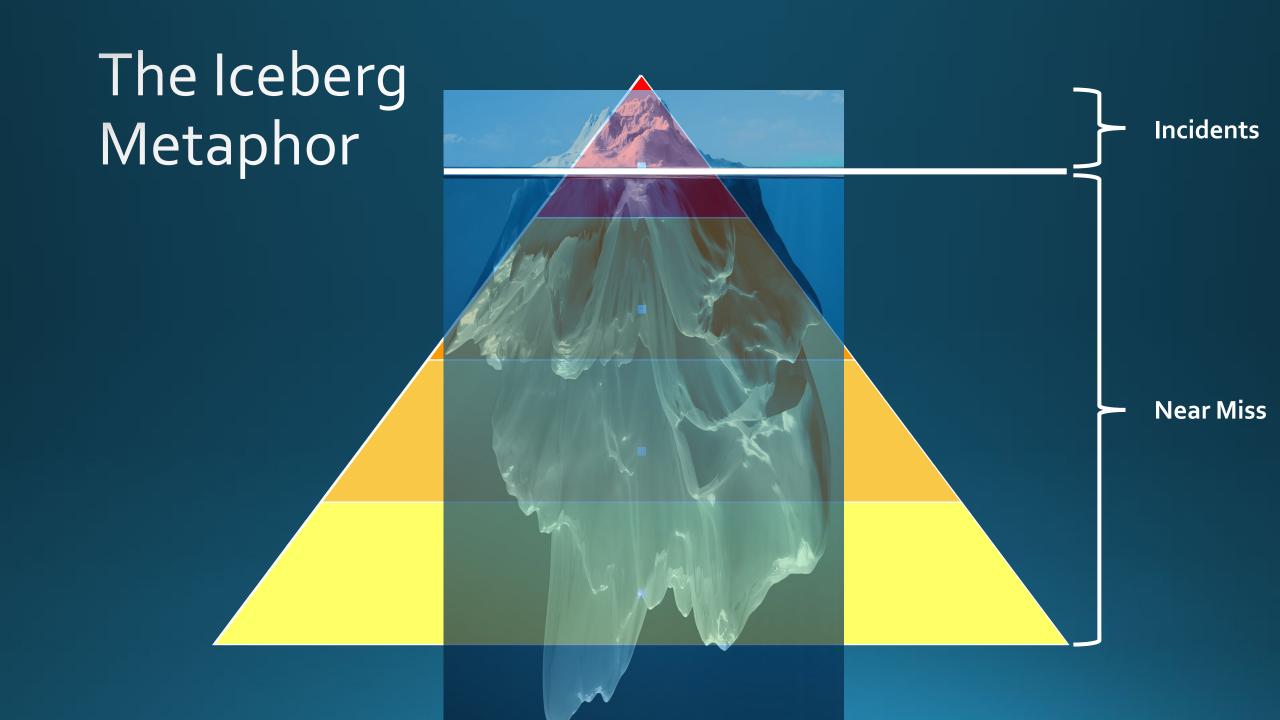
- Rick Curtis
- Pronouns: he, him, his
- Land Acknowledgement I am in New Jersey, the home of the Lenni Lenape people.
- Director, Princeton University Outdoor Action Program: 39 Years
- Founder: www.IncidentAnalytix.com
- Author: The Backpacker's Field Manual
- Founder: www.OutdoorEd.com

Introductions

- Name
- Preferred pronouns
- Organization
- Program Type (ex. outdoor program, sport association, conservation association, therapeutic adventure, etc.)
- Your role
- A risk management issue for your program (non-COVID)

Learning Objectives

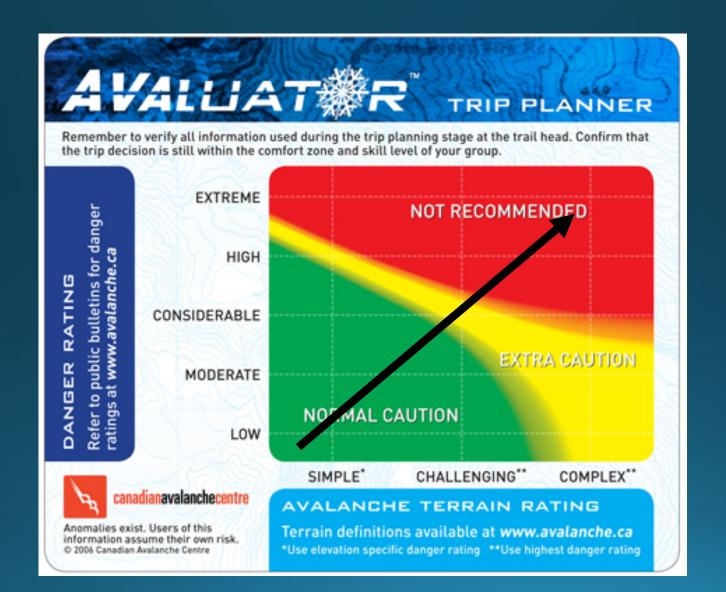
- Learn how the Safety I framework and Safety II framework are complementary parts of an overall risk management plan
- Understand the Systems Thinking Approach to risk management
- Learn how a Risk Management Information System (RMIS) can provide rich data for implementing Safety I and Safety II principles
- Learn how to assess your program by building AcciMaps and PreventiMaps


An Incident is either...

- Adverse Outcome
- Close Call/Near Miss

Accident Pyramid

Risk Level = Probability of Occurrence *
Potential Severity of Outcome


Risk Matrix

	Insignificant	Minor	Moderate	Major	Catostrophic
Almost Certain	Lowest Risk	High Risk	Highest Risk	Highest Risk	Highest Risk
Likely	Lowest Risk	Medium Risk	High Risk	Highest Risk	Highest Risk
Possible	Lowest Risk	Low Risk	Medium Risk	High Risk	Highest Risk
Unlikely	Lowest Risk	Low Risk	Medium Risk	Medium Risk	High Risk
Rare	Lowest Risk	Lowest Risk	Low Risk	Low Risk	Medium Risk

Severity of Outcome/Consequences

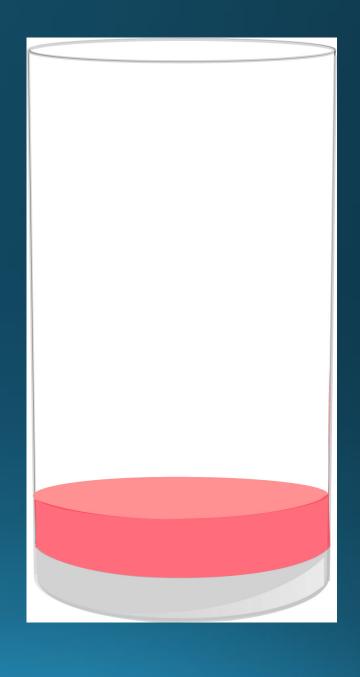
Avaluator Avalanche Risk Level Matrix

How do we approach Risk?

Paradigms

- Safety I
- Safety II

Taxonomies of Causation


 The practice and science of classification of things or concepts

Safety I

What's Going Wrong?

We are safe is there is as little as possible of this

Safety I

	Safety I
Definition of Safety	As few things as possible go wrong
Safety Management Principle	Reactive, respond when something happens or is categorized as unacceptable risk
View of Human Factors	Humans are predominantly seen as a liability or hazard. They are a problem to be fixed.
Accident Investigation	Accidents are cause by failures and malfunctions. The purpose of an investigation is to identify the causes.

Causation Taxonomies

- Potential Causes of Accidents in Outdoor Pursuits
 - Meyer (1979) revised by Williamson (1984 2013)
- Dynamics of Accidents Model
 - Hale (1982)
- Risk Management in a Dynamic Society
 - Rasmussen (1997)
- Risk Assessment & Safety Management Model (RASM)
 - Curtis (2000)
- Causation in Led Outdoor Activities
 - Salmon et al (2014)

Taxonomy: Dynamics of Accidents Model Safety I Only

Environmental Hazards Equipment Hazards

Human Factor Hazards Accident Potential

Taxonomy: Causes of Accidents in Outdoor Pursuits Safety I Only

Unsafe Conditions

- Falling objects
- Inadequate Area Security
- Weather
- Equipment/Clothing
- Physical/Psychological Profile of Participants and/or Staff

Unsafe Acts

- Inadequate Protection
- Inadequate Instruction
- Inadequate Supervision
- Unsafe Speed (fast/slow)
- Unauthorized/Improper Procedure

Errors in Judgment

- Desire to please others
- Trying to adhere to a Schedule
- Misperception
- New or Unexpected Situation (includes fear/panic)
- Miscommunication
- Disregarding Instincts

Taxonomy: Causation in Led Outdoor Activities Safety I & Safety II

- Activity Leader
- Activity Participants
- Other People in Activity Group
- Activity Group
- Other People in Activity Environment
- Supervisor/Field Managers

- Higher-Level Management
- Local Area Government
- Schools/Contracting Organizations
- Parents/Guardians
- Regulatory Bodies and Professional Associations
- State and Federal Government

Taxonomy: Risk Assessment & Safety Management Safety I & Safety II

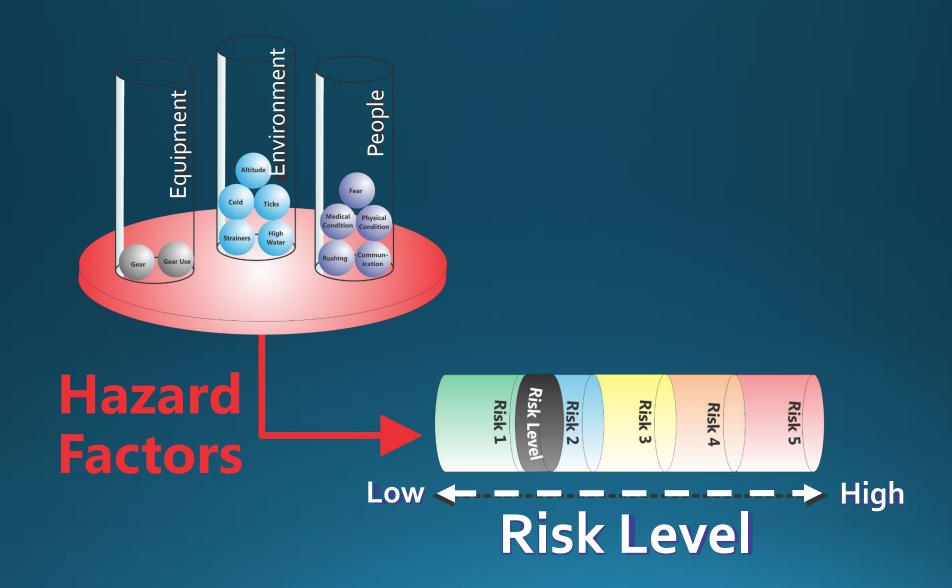
Safety I

- Equipment Factor Hazards
- Environmental Factor Hazards
- Human Factor Hazards

Safety II

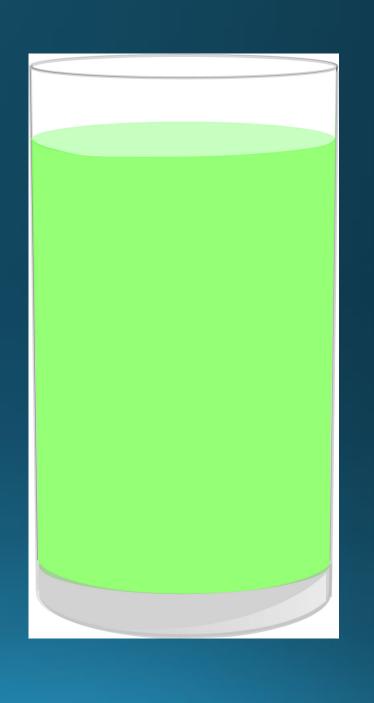
- Equipment Safety Factors
- Environmental Safety Factors
- Human Safety Factors

Challenger Disaster – From Safety I


- January 28, 1986
- Challenger breaks apart 73 seconds after liftoff
- All seven astronauts killed

Challenger Hazard Factors – Safety I

People **Equipment Environment** Engineers with little say NASA Culture Cold Pressure to Temp Rings Launch


Risk Assessment & Safety Management Model (RASM) ©

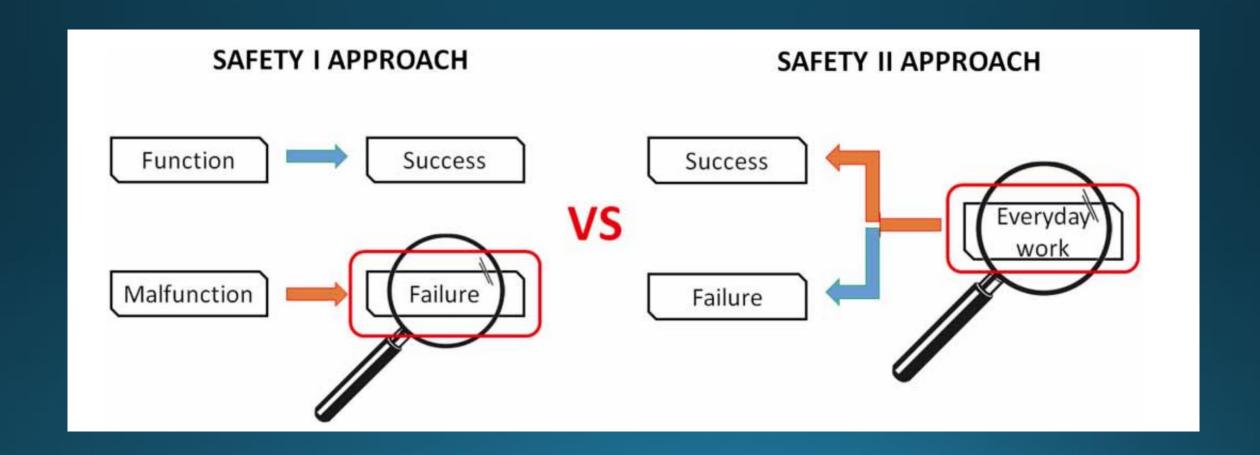
What's Going Well?

We are safe is there is as much as possible of this

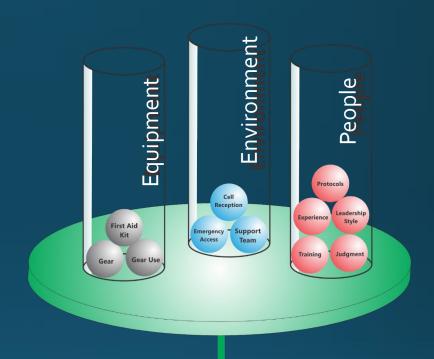
Safety I & Safety II

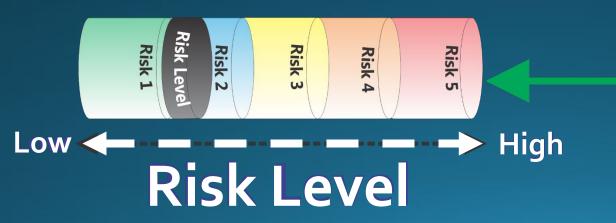
Safety II

	Safety II	
Definition of Safety	As many things as possible go right	
Safety Management Principle	Proactive, continuously try to anticipate developments and events	
View of Human Factors	Humans are seen as a resource necessary for system flexibility and resilience. They provide flexible solutions to many problems.	
Accident Investigation	Things basically happened in the same way regardless of outcome (positive or negative). The purpose of an investigation is to understand how things usually go right as a basis for explaining how things occasionally go wrong.	

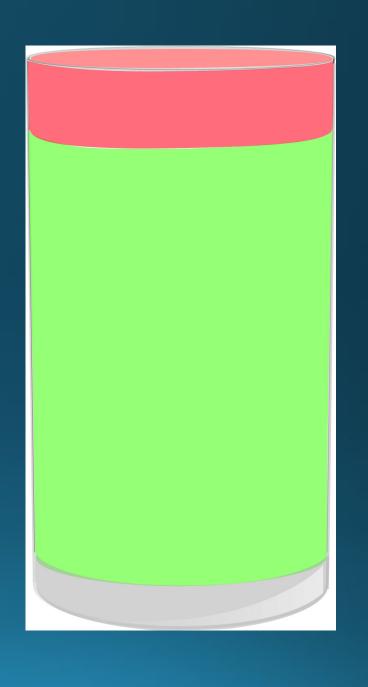

Safety II

https://www.youtube.com/watch?v=gauR843rRNk

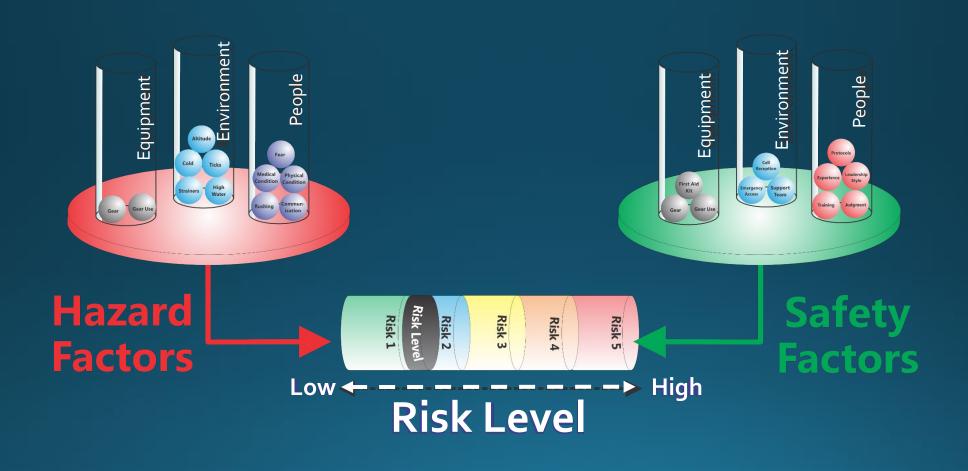



Safety I vs Safety II

Risk Assessment & Safety Management

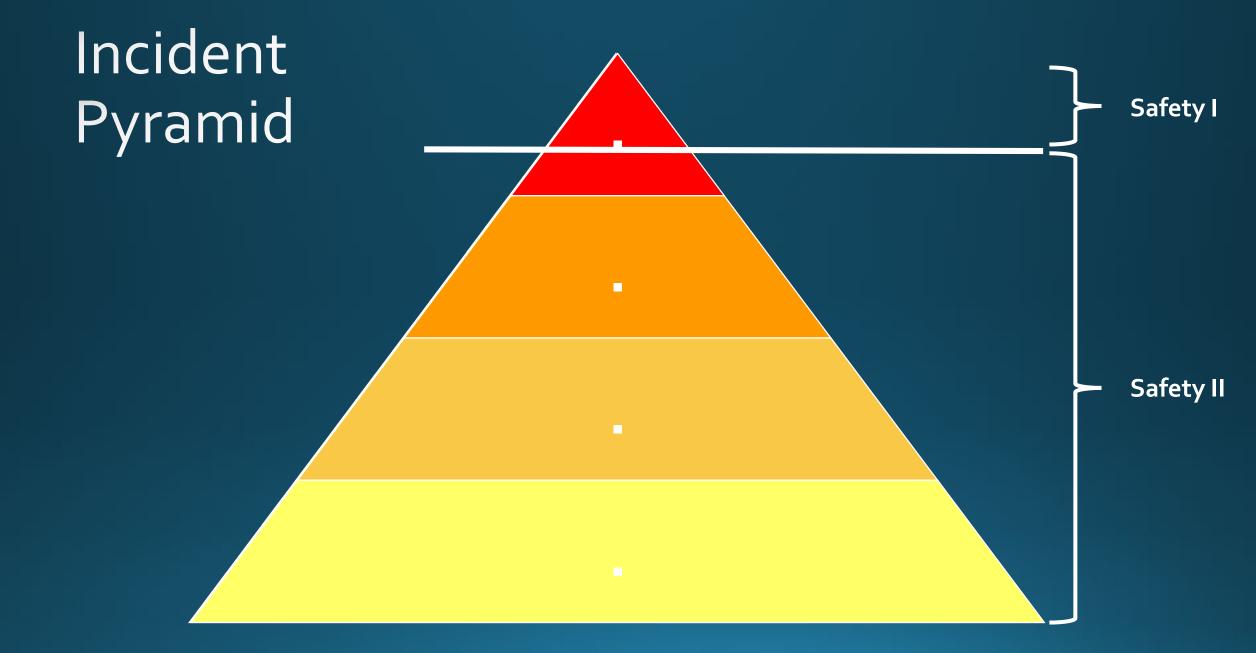


Safety Factors



Covering the entire spectrum

RASM – Safety I & Safety II The model can use different Taxonomies



Safety I vs Safety II

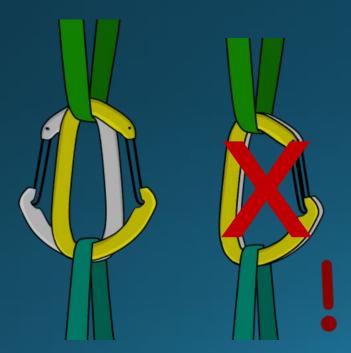
	Safety I	Safety II
Definition of Safety	As few things as possible go wrong	As many things as possible go right
Safety Management Principle	Reactive, respond when something happens or is categorized as unacceptable risk	Proactive, continuously try to anticipate developments and events
View of Human Factors	Humans are predominantly seen as a liability or hazard. They are a problem to be fixed.	Humans are seen as a resource necessary for system flexibility and resilience. They provide flexible solutions to many problems.
Accident Investigation	Accidents are cause by failures and malfunctions. The purpose of an investigation is to identify the causes.	Things basically happened in the same way regardless of outcome (positive or negative). The purpose of an investigation is to understand how things usually go right as a basis for explaining how things occasionally go wrong.

When do to use Safety I vs Safety II?

Safety I – Simple Systems

- Systems are Decomposable –
 we can break things down into
 specific components and look
 for points of failure in each
 component
- Functionality is Bimodal it either works or it is broken

Safety II – Complex Systems


- System success is based on relationships across many components, not just the components themselves
- Functionality is not simply bimodal

When do to use Safety I vs Safety II?

Safety I – Simple Systems

 Carabiners set as Opposite and Opposed – Simple, Bimodal

Safety II – Complex Systems

 Making decisions about avalanche danger with many variables & low data confidence

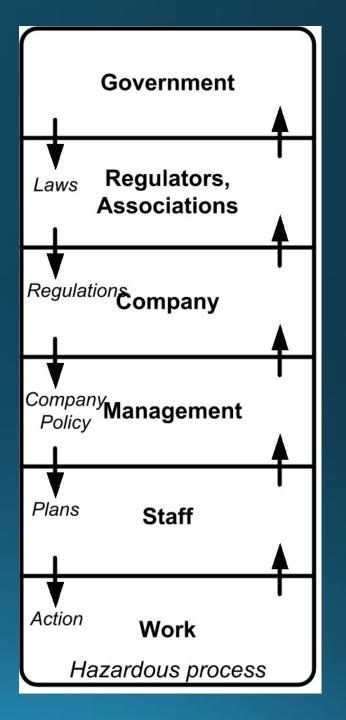
What is a Risk Management Information System?

Database System for collecting and analyzing Incident and Close Call Data that allows you to apply Safety I & Safety II principles of causal analysis to inform your risk management process.


Developing an RMIS

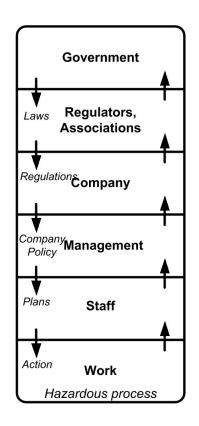
What Data to Track?

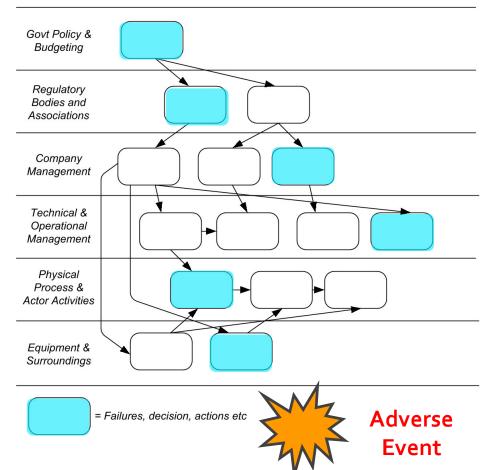
- Start with an assessment of past incidents.
 - What are most common?
 - What are the most severe?
 - What incidents are commonly associated with that activity, population, etc. (even if it hasn't happened to you)
 - What has never happened (or you never heard about it) but you need to prepare for?


RMIS Data

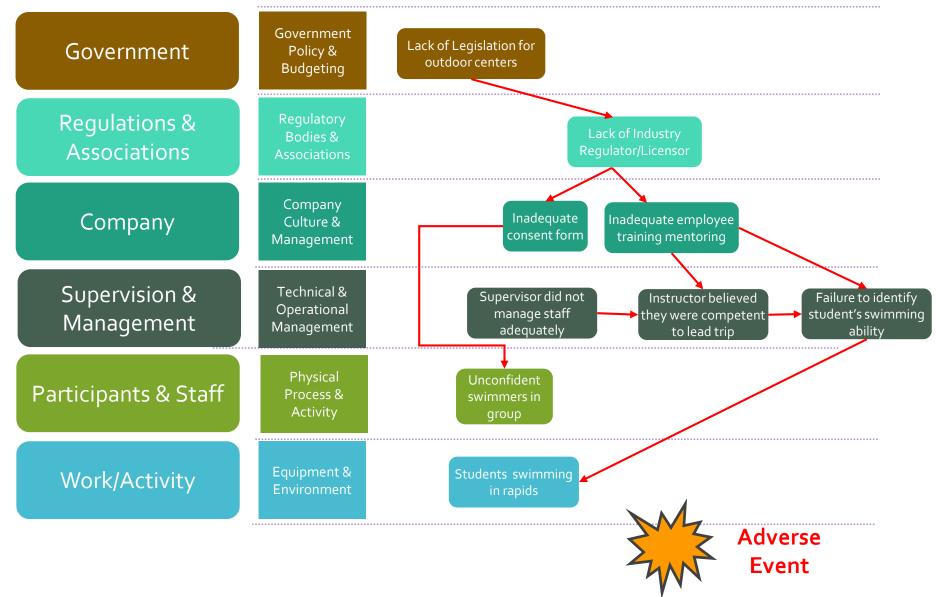
Systems Thinking

- Risk Management in a Dynamic Society, Safety Science, 1997, Jens Rasmussen
 - Safety I + Safety II


Systems Thinking¹


- "Behavior and safety is impacted by the decisions and actions of everyone in the system, not just frontline workers alone."
- "Near misses and adverse events are caused by multiple, interacting, contributing factors, not just a single bad decision or action."
- "Effective countermeasures focus on systemic changes rather than individuals."

AcciMaps


- Map of a Sociotechnical system
- Negative Outcome is at bottom
- Higher Levels show factors contributing directly or indirectly to the negative outcome

Mangatepopo River Accident, NZ from Salmon et al

Building an AcciMap

- Create a blank AcciMap with the Taxonomy headings on the left sidebar in hierarchical order
- 2. Identify the outcome(s) and enter at the bottom
- 3. Identify Causal Factors on a sticky note
 - Items which are
- 4. Enter the Causal Factors at each Taxonomy Level
- 5. Identify and Relationships between Factors
 - Had A not occurred, B would (probably) not have occurred
 AND
 - B is a direct result of A (no other factor in between, otherwise link A to C and C to B)
- 6. Check causal logic
- 7. Formulate Safety Recommendations
 - What is In Scope?
 - What is Out of Scope

Build an AcciMap from your Incident (15 min)

- Download the AcciMap Template
 - GOOGLE DRIVE LINK
- Enter Contributing Factors at the appropriate Taxonomy Level
 - You may have a Systems Approach list of things, you may have things at the 'sharp end', either is fine for this exercise
- Draw Relationships

Causation in Led Outdoor Activities Taxonomy

- Government Departments
- Regulatory Bodies & Associations
- Local area government, parents and schools,
 Organization management, planning & budgeting
- Supervisory and management decisions & actions
- Decisions & actions of leaders, participants, and other actors at scene
- Equipment, environment and meteorological conditions

Building & Discussion

Creating AcciMaps - Excel

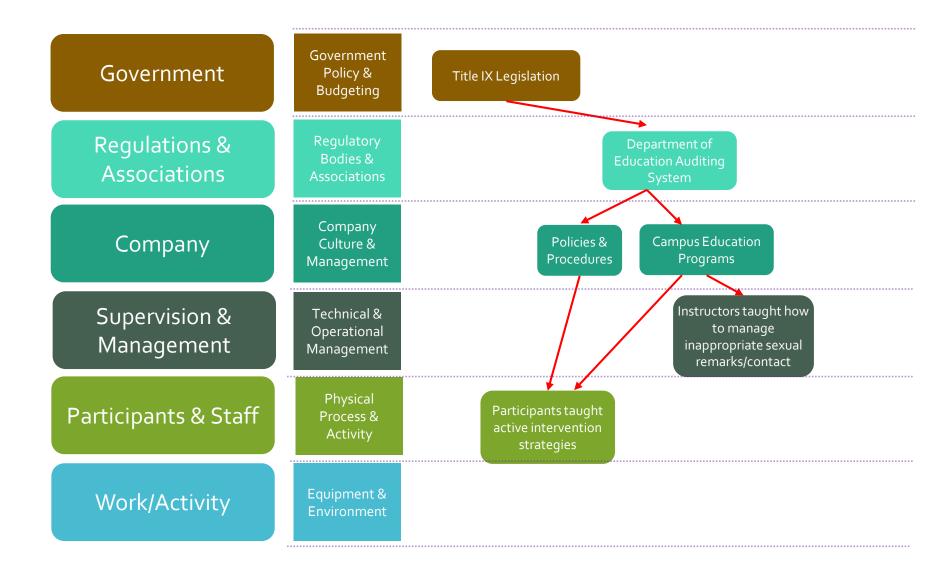
Contributing Factor Taxonomy	Contributing Factor	Relates To
Government Policy & Budgeting	Lack of Legislation	B1,B2,B3
Regulatory Bodies & Associations	Lack of industry regulator/licensor	C4,C5,C7,C9,C12,E1
Regulatory Bodies & Associations	Inadequate auditing system	В3
Regulatory Bodies & Associations	Failure of auditor to question activity risk	E2
Local Area Government Planning & Budgeting, Company Management	Financial & production pressures	C3,C10
Local Area Government Planning & Budgeting, Company Management	Rain or shine culture	
Local Area Government Planning & Budgeting, Company Management	Poorly designed program	C2,C6,D7,E1
Local Area Government Planning & Budgeting, Company Management	Inadequate information & consent form	E3
Local Area Government Planning & Budgeting, Company Management	Inadequate instruction, mentoring, training	D1,D8,E7
Local Area Government Planning & Budgeting, Company Management	Underestimation of activity risk difficulty	E1
Technical & Operational Management	Instructor lacl of experience/competence	E8,E9,E16
Technical & Operational Management	Supervisor's return from leave poorly handled	D6
Technical & Operational Management	Failure to check maps on weather fax	D8,E1
Technical & Operational Management	Failure to check for subsequent weather forcasrs	D8,E2
Technical & Operational Management	Instructor belief in competence to lead trip	
Technical & Operational Management	Failure of staff to question/prevent trip	E2,E10
Physical Processes & Actor Activities	Failure to assess/appreciate hazards	E2,E4,E8,E9
Physical Processes & Actor Activities	initiation of trip activity	
Physical Processes & Actor Activities	Unconfident swimmers in group	E6,E8,E13
Physical Processes & Actor Activities	Decision to undertake full gorge trip	
Physical Processes & Actor Activities	Failure to assess conditions	E8
Physical Processes & Actor Activities	Slow progress of group	E8
Physical Processes & Actor Activities	Failure to user halfway ledge/last high water escape	E8
Physical Processes & Actor Activities	Group stranded on ledge	
Physical Processes & Actor Activities	Decision to leave ledge	
Physical Processes & Actor Activities	Communication device failures	E9,E11,E12
Physical Processes & Actor Activities	Inadequate /inappropriate plan & instructions	E12,E13,E14

Determining Scope

- Based on the Taxonomy you selected for your analysis, determine what things are:
 - In Scope
 - Out of Scope

In Scope Prioritization

- Risk Mitigation Impact (RMI)
 - What will get you the greatest impact with the least amount of resources?
 - What is the single most important factor to address that would have a significant impact regardless of resources?
 - If it is resource intense, how will you make the case for getting those resources?
 - Who are your stakeholders to help you?


Safety II = PreventiMaps

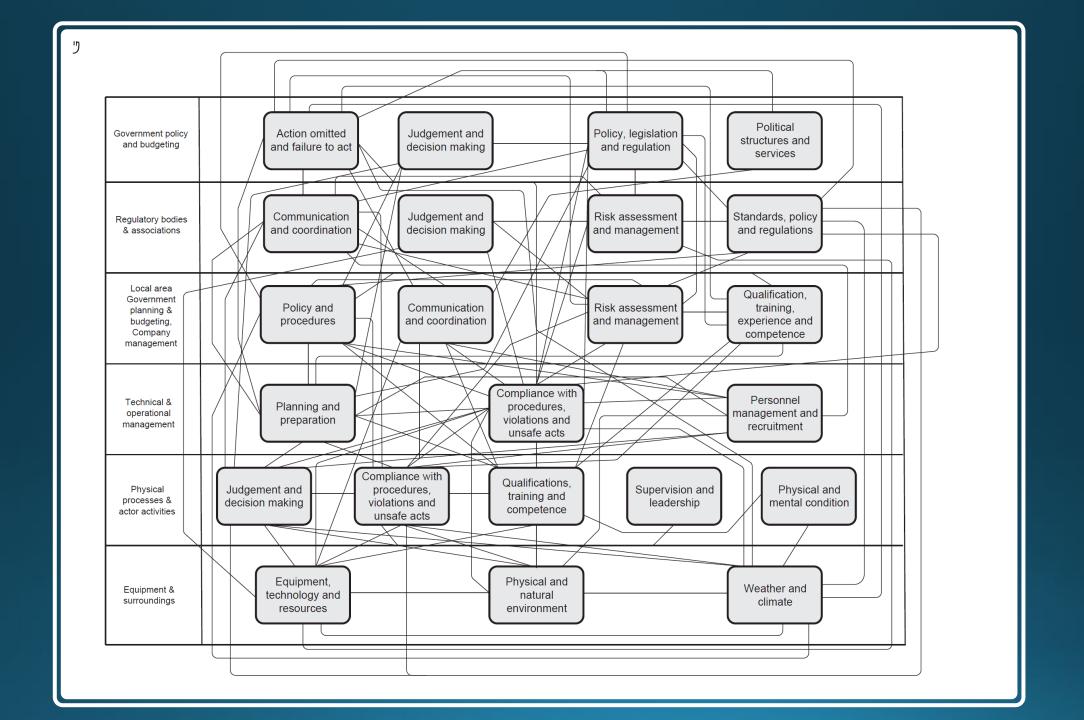
Safety I = AcciMaps (hazard analysis)
 "What went wrong?"

then

Safety II = PreventiMaps (mitigation analysis)
 "What went right?"

Title IX Implementation on Campus

買


Meta-analysis of AcciMap Causal Factors

Taxonomy	Contributory Factors	Percent	
Equipment, Environment & Surroundings	Physical & Natural Environment Factors	32.6%	In Scope
Equipment, Environment & Surroundings	Equipment, Technology & Resources	30.8%	In Scope
Equipment, Environment & Surroundings	Weather & Climate	15.1%	Out of Scope (in the field)
Physical processes & Actor Activities	Judgement & Decision Making	20.2%	In Scope
Physical processes & Actor Activities	Compliance with Procedures, Violations & Unsafe Acts	20%	In Scope
Physical processes & Actor Activities	Qualification, Experience & Competence	15%	In Scope

買

Meta Analysis of AcciMap Causal Factors

Taxonomy	Contributory Factors	Percent	
Equipment, Environment & Surroundings	Physical & Natural Environment Factors	32.6%	May be In Scope or Out of Scope
Equipment, Environment & Surroundings	Equipment, Technology & Resources	30.8%	In Scope
Equipment, Environment & Surroundings	Weather & Climate	15.1%	Out of Scope (in the field)
Physical processes & Actor Activities	Judgement & Decision Making	20.2%	In Scope
Physical processes & Actor Activities	Compliance with Procedures, Violations & Unsafe Acts	20%	In Scope
Physical processes & Actor Activities	Qualification, Experience & Competence	15%	In Scope

Ħ

Top 3 Contributory Factors/Taxonomy Level

Government Policy & Budgeting	Policy, legislation & regulation	Action omitted, failure to act	Judgment & decision making
Regulatory Bodies & Associations	Standards, policy & regulation	Communication & coordination	Judgment & decision making
Local Area Government planning & Budgeting, Company Management	Risk assessment & management	Qualification, experience, training & competence	Policy & procedures
Technical & Operational Management	Planning & preparation	Compliance violations & unsafe acts	Personnel management & recruitment
Physical Processes & Actor Activities	Judgment & decision making	Compliance violations & unsafe acts	Qualification, experience, training & competence
	Physical & natural environment	Equipment, technology & resources	Weather & climate

Implementing Culture Change — Safety I & Safety II

Diversity & Inclusion Risks

- Physical Safety is only one dimension on the Risk Management spectrum
- Emotional Safety is equally important and Hazards can be equally life threatening
 - Teens committing suicide after bullying
 - LGBTQ individuals being harassed
- Talk to your staff about where there are Emotional/Interpersonal Hazards, Assess the Risk Level, and establish the necessary guidelines, structures, protocols, culture to manage the risk

Concept Review

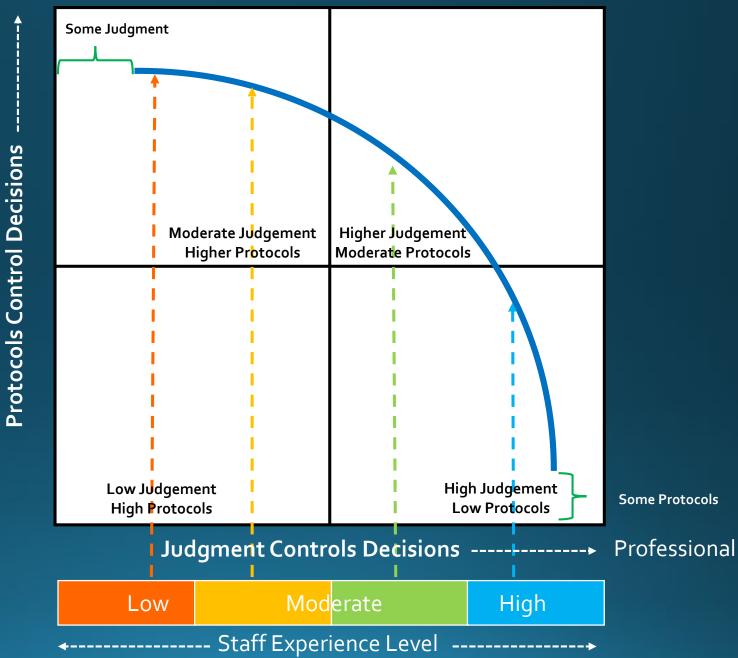
- Safety I
- Safety II
- Taxonomy of Causation
- Systems Thinking
- Collecting Incident and Close Call Data
- Building AcciMaps
 - Identifying In Scope vs Out of Scope
 - Determining RMI for In Scope
- Building PreventiMaps
- Implementing Data Driven Organizational Change

Take Aways

- Develop your Incident Data Management Plan
 - 1. Review your Incidents
 - 2. Decide What to Track
 - 3. Develop a Database
 - 4. Determine Taxonomy
 - 5. Train your Staff in collecting/submitting data
 - 6. Build your Analytics
 - 7. Implement Program Changes based on actionable data

- Risk Management in a Dynamic Society: A modeling problem – Jens Rasmussen (1997) https://orbit.dtu.dk/ws/files/158016663/SAFESCI.pdf
- From Safety-I to Safety-II: A White Paper Hollnagel E; Wears RL; Braithwaite J. (2015) -https://www.england.nhs.uk/signuptosafety/wp-content/uploads/sites/16/2015/10/safety-1-safety-2-whte-papr.pdf
- Translating Systems Thinking Into Practice: A Guide to Developing Incident Reporting Systems – Goode, Salmon, Lenne, Finch – Available at Amazon Books
- https://www.IncidentAnalytix.com
- Contact: Rick Curtis –
 staff@incidentanalytix.com

Key Resources


Videos & Articles

- 1.5.5 Safety I vs Safety II https://www.youtube.com/watch?v=WMoLVv9NrhM
- Doing Safety Differently Sydney Dekker: https://www.youtube.com/watch?v=6gREMV6j2A4
- Safety II & Safety II Erik Hoffnagel: https://vimeo.com/channels/1366431/89492241
- Perceiving what cannot be seen" the practical side of Safety II Erik Hollnagel: https://vimeo.com/159498494
- A story of Safety II Jeffrey Braithwaite: https://www.youtube.com/watch?v=gauR843rRNk
- Safety Differently | The Movie: https://www.youtube.com/watch?v=moh4QN4IAPg
- Sidney Dekker Safety Differently Lecture: https://www.youtube.com/watch?v=oMtLSoFNDZs
- Sidney Dekker Just Culture short course 1: https://www.youtube.com/watch?v=PVWjgqDANWA
- The New View of Safety with Todd Conklin: https://www.youtube.com/watch?v=loYUQlWiRgc
- Dr. Todd Conklin speech "Risk Analysis is Fixed in Time But Hazards Ebb and Flow: https://www.youtube.com/watch?v=X211fU39808

Videos & Articles

- Guidelines for AcciMap Analysis: https://openresearch-repository.anu.edu.au/bitstream/1885/20987/2/01_Branford_Guidelines_for_ACCIMAP_2009.pdf
- Webinar: An Introduction to "New Safety" (HOP, Safety II, and Safety Differently): https://www.youtube.com/watch?v=zqZVGaFIhyw
- FAA Safety Management Systems (SMS) Fundamentals: Policy: https://www.youtube.com/watch?v=j8NoPZx5YwM
- FAA Safety Management Systems (SMS) Fundamentals: Safety Risk Management Component: https://www.youtube.com/watch?v=b6dwxQ3oEAE
- Mangatepopo canyoning tragedy a decade on: 'I know they would be loving every minute of life': https://www.nzherald.co.nz/nz/news/article.cfm?c_id=1&objectid=12032068
- In a Flash TV Movie: https://www.tvnz.co.nz/shows/in-a-flash/episodes/s1-e1
- BBC NASA Challenger Disaster: https://www.youtube.com/watch?v=reM5fTo-6Pl
- Challenger Disaster Governmental Report: https://www.govinfo.gov/content/pkg/GPO-CRPT-99hrpt1016.pdf
- A Review of Accident Modelling Approaches for Complex Critical Sociotechnical Systems: https://www.semanticscholar.org/paper/A-Review-of-Accident-Modelling-Approaches-for-Qureshi/c3a597212068c27be45d84dec76e86baabd4cf90

Protocols/Rules vs Judgment/Experience

Final Thoughts

The biggest mistake about a mistake is not learning from it.

Resources

www.OutdoorEd.com www.IncidentAnalytix.com